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Proposition 0.1 (Exercise 8-13). There is a smooth vector field on S* that vanishes at
exactly one point.

Proof. Let N, S be the north and south poles of 5% respectively. Let o : (S*\ {N}) — R?
be the stereographic projection and let 7 : (S?\ {S}) — R? be the corresponding projection
omitting the south pole. Explicitly,

U(x’y’z):( . Y > a_l(u,v):( 2u 2v u2+02—1)

1—2"1—2 W42+ u2 02+ 1 w2 40241

5(%%2):(:5 y) 5_1(1“}):( 2u 2 1—u2—v2)

142 142 w42+ w2 +02 4+ 1w +02 41

Note that the transition function o o ¢! is explicitly

coc H(u,v) = “ v
’ u? + 02" u? + 02

We know that o~ is a diffeomorphism, because it is a smooth chart for S?. By Proposition
8.19 (Lee), there is a unique smooth vector field (67).(2) on S? \ {N}. Define a rough
vector field on all of S? by

X, - {((a-m%))p p#N
0 p=N

Because 07! is a diffeomorphism, (07!), is a vector space isomorphism at each p € S*\ {N}.
Therefore, since 2 is nonzero everywhere, (6~'), does not vanish on %\ {N}. We just need
to show that X is smooth at the north pole.

If we compute the coordinate representation of X in the smooth chart (5% \ {S},7), we
will have another expression for X, which is defined on S?\ {S}. This expression will agree
for p € S?\ {S} \ {IV} and will be smooth on 5%\ {S}. One can check that the component
functions X*(p) are zero at p = N. Thus X is smooth at N.

]

Lemma 0.2 (for Exercise 8-25). Let G be an abelian Lie group and let i : G — G be the

inversion map g — g~ *. Then i is a Lie group isomorphism.
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Proof. The inversion map is smooth by definition of a Lie group. If g, h € GG, then
i(gh) = (gh)™ = h™ g~ = i(h)i(g) = i(g)i(h)

using the fact that G is abelian. Thus ¢ is a group homomorphism. It is injective since
inverses are unique, and it is onto since every element has an inverse. Thus ¢ is bijective. It
is its own inverse, so it has a smooth inverse, so it is a diffeomorphism, so it is a Lie group
isomorphism. ]

Proposition 0.3 (Exercise 8-25). Let G be an abelian Lie group. Then the Lie algebra of
G s abelian.

Proof. Let X,Y € T.G (that is, X,Y € Lie(G)). Using problem 7-2, we have
X =—X .Y ==Y X, Y] = —(XY - YX)

Then we compute

[, X,5,Y]=[-X,-Y]=(-X)(-Y) - (-Y)(-X)=XY -YX
Since the inversion map ¢ is a Lie group homomorphism, 2, : T.G — T.G is a Lie algebra
homomorphism (Theorem 8.44 of Lee) so

(X,)Y]=XY -YX = [i,X,i.,Y] =4,[X,)Y] =—(XY - YX) =-[X,Y]
Thus we have [X,Y] = —[X, Y], which implies that [X,Y] = 0. Thus Lie(G) is abelian. [
Proposition 0.4 (Exercise 9-4). Forn € N we define a flow on St C C™ by 0(t,z) = e"z.
Then the infinitesimal generator of 6 is a smooth non-vanishing vector field on S*~1.
Proof. The infinitesimal generator of 8 is the vector field V, defined by
0

V, = —e'z

°oot
0 is smooth because it is essentially a map between Euclidean spaces, and its partial deriva-
tives are all smooth. Since 6 is smooth, by Proposition 9.11 V' is a smooth vector field. We
need to show that it is non-vanishing. By the above computation, V, = 0 only if 2 = 0. But
z=0¢ S? ! so V is non-vanishing on S*"~1, O

Lemma 0.5 (for Exercise 9-7). Let B = B(0,1) be the unit ball in R™ and let p,q € B.
There is a compactly supported smooth vector field X on B whose flow 0 satisfies 61(p) = q.

Proof. Let

= e’y

t=0

=1z
t=0

A={p+tl¢g—p):0<t<1}

be the line segment connecting p,q. Note that A is closed. Because B is convex, A C B.
Define a constant vector field X on A by X, = ¢—p. Then X is trivially smooth. By Lemma
8.6 (Lee), there is a smooth vector field X on B such that X |4 = X and supp X C B. Thus

X is a compactly supported smooth vector field on B. Note that

v(t) =p+tlg—p)

is an integral curve of X, as Y (t) = q—p = Xy for any 0 < ¢y < 1. Therefore, if 0 is the
flow of X, we have 0;(p) = (1) = q. O



Proposition 0.6 (Exercise 9-7). Let M be a connected smooth manifold. Then the group
of diffeomorphisms from M to itself acts transitively on M, that is, for p,q € M, there is a
diffeomorphism F : M — M such that F(p) =

Proof. Fix p € M and let U, be the orbit of p under this action, that is,
={q€ M :3F : M — M such that F(p) = ¢}

where F' is a diffeomorphism. First, note that U, is non-empty, as the identity on M
is a diffeomorphism, so p € U,. We claim that U, is both open and closed. First, we
show that U, is open. Let ¢ € U, and let (V,%) be a smooth chart with ¢ € V so that
(V)= B(0,1) C R". We claim that V' C U,. Let s € V. Then 9(s),4(q) € B(0,1), so by
the previous lemma, there is a compactly supported smooth vector field X on B(0,1) with
flow @ so that 61(1(q)) = 1(s). By Proposition 8.19 (Lee), there is a unique smooth vector
field Y on V that is ¢-related to X, that is,

.Y, =X, forreV

Let n be the flow of Y. As Y is also compactly supported, by Lemma 8.6 (Lee) there is a
smooth vector field Y on M such that Y\suppy =Y and suppY C V. If n is the flow of Y
then 7(t,p) = p outside V, so 77 is a smooth global extension of n. In particular, 7; i s a
smooth extension of 7y, and 7; is a diffeomorphism on M. By Corollary 9.14 (Lee), as ¢!
is a diffeomorphism,
m=1v 'oboy

In particular,

mg) =¢ " obiop(q) =¢~ og(s) =
By assumption, ¢ € U, so there is a diffecomorphism F': M — M such that F(p) = ¢. Thus
moF : M — M is a diffcomorphism that maps p to s, so s € U,. Thus V C U,, so U, is
open.

Now we show that U, is closed. If M \ U, = (), then we’re done, so suppose M \ U, # 0.
Let s € M \ U, and let (V,4) be a smooth chart containing s with (V') = B(0,1). By the
same reasoning as above, if V' has non-empty intersection with U,, say r € V N U,, then
there is a diffeomorphism mapping p to r and a diffeomorphism mapping r to s, so s € U,
which is a contradiction. Thus V N U, =0, so V is an open neighborhood of s contained in
M\ U,. Thus M \ U, is open, so U, is closed.

We have shown that U, is open, closed, and non-empty. Since M is connected, this
implies that U, = M. Thus there is only one orbit, so the action is transitive. O

Proposition 0.7 (Exercise 4a). Let XY, Z be the vector fields on R? defined by
0 0 0 0 0 0

X =y — 2 Y .,z .Y
Z@y yaz x@z Z@x y@x x@y

Define ¢ : R? — X(R3) by
(a,b,c) — aX +bY +cZ

Then ¢ is an isomorphism onto its image, and the bracket of vector fields on R? corresponds
to the cross product on R3. (That is, ¢ is a Lie algebra isomorphism onto its image.)
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Proof. First we show that ¢ is linear. Let A € R, and (a, b, ¢), (d, e, f) € R3.

d(Na,b,c) + (d,e, f)) = p(Aa+d, b+ e, e+ f) = (Aa+b)X +(Nb+e)Y + (Ac+ f)Z
=ANaX +0Y +cZ)+ (dX +eY + fZ) = Ap(a,b,c) + ¢(d, e, f)

Thus ¢ is linear. To show that ¢ is injective, we show that it has trivial kernel. If (a,b,c) €
ker ¢, then

0=aX+bY +cZ = (cy—bz)%+(az—ca:)a%l+(bx—ay)%

which implies that for all z,y, z € R, we have
cy—bz=az—cr=br—ay=0

In particular, this holds for y = 1,2 = 0, so ¢ = 0. Likewise, z =1, =0 = a =0, and
x=1,y=0 = b= 0. Thus the kernel of ¢ is just (0,0,0), so ¢ is injective. It is onto its
image by definition, so it is an isomorphism onto its image.

Let ey, €9, e3 be the standard basis for R? (where e; = (1,0,0), etc.). Then ¢ maps the
basis {e1, e, e3} to {X,Y, Z} therefore {X,Y, Z} is a basis for the image of ¢ (because ¢ is
an isomorphism). The cross products of the standard basis are

€1 X ey =e€3 e3Xe3=e€ e3Xe =e
We also compute the brackets of our vector fields X,Y, Z, and find
X,Y|=2Z [V, Z]=X [Z,X]|=Y
Thus we have

¢(€1 X 62) = ¢(€3) =Z= [X, Y] = [425(61)7 ¢(€2)]
Plea x e3) = Ppler) = X = [Y, Z] = [p(e2), d(es)]
Ples X e1) = ¢(ez) =Y = [Z, X] = [¢(e3), p(e1)]

Thus the bracket of vector fields on R?® corresponds to the cross product on R3®. In the
language of Lie algebras, the cross product gives a Lie algebra structure to R? by

[]:R®x R® —» R?
[z, y] =z xy

and we have just shown that ¢ is a Lie algebra isomorphism onto its image. O

(Exercise 4b)
Compute the flow of a X + bY + cZ.
Solution. First, note that

(az — cac)2 + (bx — ay)2

aX—i—bY—l—cZ:(cy—bz)a 5 5
Yy z

%—f-
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We compute the integral curves of this vector field by solving a system of ODEs. Let
v(t) = (z(t),y(t), z(t)) be an integral curve. Then we have

T =cy—bz
Yy =az—cx

Z=bxr —ay

which we can also write as

dt

Let A be the 3-by-3 matrix above. The eigenvalues of A are 0, £v/a? + b? + ¢? as a routine
calculation shows (compute the roots of det(A — AI)). Let Ay = +va? 4+ b? + ¢? and
A2 = —va? + b? + 2. First we compute the eigenvector associated to A = 0. We have

b c
y=-—x Zz=-x
a a

so the eigenvector is (1, g, €) which is equivalent, up to scaling, to vo = (a, b, c). (Note that

we assume here that a # 0.) Now we compute the eigenvector associated to \;. We assume
that A # 0, so one of a,b,c # 0. WLOG, assume a # 0. We compute

y=(1/N)(az —cx) = (1/a)(bx — \2)
2= (1N)(br — ay) = (1/a)Ay + cx)
so then
_ab—Ac _ac+ b
V=GR T

so the associated eigenvector is

] ab— ¢ ac+ \b
7CL2+A27CL2+A2 x

which is equivalent up to rescaling to (a? + A%, ab + Ac, \b + ac). Note that when A = 0 we
recove the previous eigenvector vy = (a, b, c). We denote by v; the eigenvector for A\; and vy
the eigenvector for A\y. The solutions to our system of ODEs then have the form

’y(t) = k’QU() + k:le’\ltvl + k?ge)\ztUQ

for scalars ko, k1, k2 € R. So we know what all of the integral curves of aX + bY + ¢Z look
like. If 0 is the flow of this vector field, then 6(¢,p) = ~(t) where 7 is an integral curve with
v(0) = p. To find kg, k1, ko so that v(0) = p = (x,y, z), we solve the linear system

k’o a a2 + /\% (12 + )\% k(] xz
[’Uo U1 Ug] kil = [b ab+ Aic ab+ M| k1| = |y
ko c ac+ Ab ac+ Ab| | ks z



Using Matlab, I computed the inverse of this 3 x 3 matrix, but it is excessively lengthy and
complicated, so I don’t include it here. Suffice it say, we can compute kg, k1, k2 in terms of
a,b,c and z,y, z so that the system is solved. Then we have

’7(0) = kOUO + kivy + kavg = (:L‘7 Y, 2)
and v is an integral curve of a X + 0Y + c¢Z. Then the flow 6 is given by
0(t, (z,y,2)) =(t)

keeping in mind that + depends on kg, k1, k5 which depend linearly on x,y, z.



