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Proposition 0.1 (Exercise 8-13). There is a smooth vector field on S2 that vanishes at
exactly one point.

Proof. Let N,S be the north and south poles of S2 respectively. Let σ : (S2 \ {N}) → R2

be the stereographic projection and let σ̃ : (S2 \ {S})→ R2 be the corresponding projection
omitting the south pole. Explicitly,

σ(x, y, z) =

(
x

1− z
,

y

1− z

)
σ−1(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
σ̃(x, y, z) =

(
x

1 + z
,

y

1 + z

)
σ̃−1(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
1− u2 − v2

u2 + v2 + 1

)
Note that the transition function σ ◦ σ̃−1 is explicitly

σ ◦ σ̃−1(u, v) =

(
u

u2 + v2
,

v

u2 + v2

)
We know that σ−1 is a diffeomorphism, because it is a smooth chart for S2. By Proposition
8.19 (Lee), there is a unique smooth vector field (σ−1)∗(

∂
∂x

) on S2 \ {N}. Define a rough
vector field on all of S2 by

Xp =

{
((σ−1)∗(

∂
∂x

))p p 6= N

0 p = N

Because σ−1 is a diffeomorphism, (σ−1)∗ is a vector space isomorphism at each p ∈ S2 \{N}.
Therefore, since ∂

∂x
is nonzero everywhere, (σ−1)∗ does not vanish on S2 \{N}. We just need

to show that X is smooth at the north pole.
If we compute the coordinate representation of X in the smooth chart (S2 \ {S}, σ̃), we

will have another expression for Xp which is defined on S2 \ {S}. This expression will agree
for p ∈ S2 \ {S} \ {N} and will be smooth on S2 \ {S}. One can check that the component
functions X i(p) are zero at p = N . Thus X is smooth at N .

Lemma 0.2 (for Exercise 8-25). Let G be an abelian Lie group and let i : G → G be the
inversion map g 7→ g−1. Then i is a Lie group isomorphism.
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Proof. The inversion map is smooth by definition of a Lie group. If g, h ∈ G, then

i(gh) = (gh)−1 = h−1g−1 = i(h)i(g) = i(g)i(h)

using the fact that G is abelian. Thus i is a group homomorphism. It is injective since
inverses are unique, and it is onto since every element has an inverse. Thus i is bijective. It
is its own inverse, so it has a smooth inverse, so it is a diffeomorphism, so it is a Lie group
isomorphism.

Proposition 0.3 (Exercise 8-25). Let G be an abelian Lie group. Then the Lie algebra of
G is abelian.

Proof. Let X, Y ∈ TeG (that is, X, Y ∈ Lie(G)). Using problem 7-2, we have

i∗X = −X i∗Y = −Y i∗[X, Y ] = −(XY − Y X)

Then we compute

[i∗X, i∗Y ] = [−X,−Y ] = (−X)(−Y )− (−Y )(−X) = XY − Y X

Since the inversion map i is a Lie group homomorphism, i∗ : TeG → TeG is a Lie algebra
homomorphism (Theorem 8.44 of Lee) so

[X, Y ] = XY − Y X = [i∗X, i∗Y ] = i∗[X, Y ] = −(XY − Y X) = −[X, Y ]

Thus we have [X, Y ] = −[X, Y ], which implies that [X, Y ] = 0. Thus Lie(G) is abelian.

Proposition 0.4 (Exercise 9-4). For n ∈ N we define a flow on S2n−1 ⊂ Cn by θ(t, z) = eitz.
Then the infinitesimal generator of θ is a smooth non-vanishing vector field on S2n−1.

Proof. The infinitesimal generator of θ is the vector field Vz defined by

Vz =
∂

∂t
eitz

∣∣∣∣
t=0

= ieitz

∣∣∣∣
t=0

= iz

θ is smooth because it is essentially a map between Euclidean spaces, and its partial deriva-
tives are all smooth. Since θ is smooth, by Proposition 9.11 V is a smooth vector field. We
need to show that it is non-vanishing. By the above computation, Vz = 0 only if z = 0. But
z = 0 6∈ S2n−1 so V is non-vanishing on S2n−1.

Lemma 0.5 (for Exercise 9-7). Let B = B(0, 1) be the unit ball in Rn and let p, q ∈ B.
There is a compactly supported smooth vector field X on B whose flow θ satisfies θ1(p) = q.

Proof. Let
A = {p+ t(q − p) : 0 ≤ t ≤ 1}

be the line segment connecting p, q. Note that A is closed. Because B is convex, A ⊂ B.
Define a constant vector field X on A by Xa = q−p. Then X is trivially smooth. By Lemma
8.6 (Lee), there is a smooth vector field X̃ on B such that X̃|A = X and supp X̃ ⊂ B. Thus

X̃ is a compactly supported smooth vector field on B. Note that

γ(t) = p+ t(q − p)

is an integral curve of X̃, as γ′(t) = q − p = X̃γ(t0) for any 0 ≤ t0 ≤ 1. Therefore, if θ is the

flow of X̃, we have θ1(p) = γ(1) = q.
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Proposition 0.6 (Exercise 9-7). Let M be a connected smooth manifold. Then the group
of diffeomorphisms from M to itself acts transitively on M , that is, for p, q ∈ M , there is a
diffeomorphism F : M →M such that F (p) = q.

Proof. Fix p ∈M and let Up be the orbit of p under this action, that is,

Up = {q ∈M : ∃F : M →M such that F (p) = q}

where F is a diffeomorphism. First, note that Up is non-empty, as the identity on M
is a diffeomorphism, so p ∈ Up. We claim that Up is both open and closed. First, we
show that Up is open. Let q ∈ Up and let (V, ψ) be a smooth chart with q ∈ V so that
ψ(V ) = B(0, 1) ⊂ Rn. We claim that V ⊂ Up. Let s ∈ V . Then ψ(s), ψ(q) ∈ B(0, 1), so by
the previous lemma, there is a compactly supported smooth vector field X on B(0, 1) with
flow θ so that θ1(ψ(q)) = ψ(s). By Proposition 8.19 (Lee), there is a unique smooth vector
field Y on V that is ψ-related to X, that is,

ψ∗Yr = Xr for r ∈ V

Let η be the flow of Y . As Y is also compactly supported, by Lemma 8.6 (Lee) there is a

smooth vector field Ỹ on M such that Ỹ |suppY = Y and supp Ỹ ⊂ V . If η̃ is the flow of Ỹ ,
then η̃(t, p) = p outside V , so η̃ is a smooth global extension of η. In particular, η̃1 i s a
smooth extension of η1, and η̃1 is a diffeomorphism on M . By Corollary 9.14 (Lee), as ψ−1

is a diffeomorphism,
η̃1 = ψ−1 ◦ θ1 ◦ ψ

In particular,
η̃1(q) = ψ−1 ◦ θ1 ◦ ψ(q) = ψ−1 ◦ ψ(s) = s

By assumption, q ∈ Up so there is a diffeomorphism F : M →M such that F (p) = q. Thus
η̃1 ◦ F : M → M is a diffeomorphism that maps p to s, so s ∈ Up. Thus V ⊂ Up, so Up is
open.

Now we show that Up is closed. If M \ Up = ∅, then we’re done, so suppose M \ Up 6= ∅.
Let s ∈ M \ Up and let (V, ψ) be a smooth chart containing s with ψ(V ) = B(0, 1). By the
same reasoning as above, if V has non-empty intersection with Up, say r ∈ V ∩ Up, then
there is a diffeomorphism mapping p to r and a diffeomorphism mapping r to s, so s ∈ Up,
which is a contradiction. Thus V ∩ Up = ∅, so V is an open neighborhood of s contained in
M \ Up. Thus M \ Up is open, so Up is closed.

We have shown that Up is open, closed, and non-empty. Since M is connected, this
implies that Up = M . Thus there is only one orbit, so the action is transitive.

Proposition 0.7 (Exercise 4a). Let X, Y, Z be the vector fields on R3 defined by

X = z
∂

∂y
− y ∂

∂z
Y = x

∂

∂z
− z ∂

∂x
Z = y

∂

∂x
− x ∂

∂y

Define φ : R3 → X(R3) by
(a, b, c) 7→ aX + bY + cZ

Then φ is an isomorphism onto its image, and the bracket of vector fields on R3 corresponds
to the cross product on R3. (That is, φ is a Lie algebra isomorphism onto its image.)
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Proof. First we show that φ is linear. Let λ ∈ R, and (a, b, c), (d, e, f) ∈ R3.

φ(λ(a, b, c) + (d, e, f)) = φ(λa+ d, λb+ e, λc+ f) = (λa+ b)X + (λb+ e)Y + (λc+ f)Z

= λ(aX + bY + cZ) + (dX + eY + fZ) = λφ(a, b, c) + φ(d, e, f)

Thus φ is linear. To show that φ is injective, we show that it has trivial kernel. If (a, b, c) ∈
kerφ, then

0 = aX + bY + cZ = (cy − bz)
∂

∂x
+ (az − cx)

∂

∂y
+ (bx− ay)

∂

∂z

which implies that for all x, y, z ∈ R, we have

cy − bz = az − cx = bx− ay = 0

In particular, this holds for y = 1, z = 0, so c = 0. Likewise, z = 1, x = 0 =⇒ a = 0, and
x = 1, y = 0 =⇒ b = 0. Thus the kernel of φ is just (0, 0, 0), so φ is injective. It is onto its
image by definition, so it is an isomorphism onto its image.

Let e1, e2, e3 be the standard basis for R3 (where e1 = (1, 0, 0), etc.). Then φ maps the
basis {e1, e2, e3} to {X, Y, Z} therefore {X, Y, Z} is a basis for the image of φ (because φ is
an isomorphism). The cross products of the standard basis are

e1 × e2 = e3 e2 × e3 = e1 e3 × e1 = e2

We also compute the brackets of our vector fields X, Y, Z, and find

[X, Y ] = Z [Y, Z] = X [Z,X] = Y

Thus we have

φ(e1 × e2) = φ(e3) = Z = [X, Y ] = [φ(e1), φ(e2)]

φ(e2 × e3) = φ(e1) = X = [Y, Z] = [φ(e2), φ(e3)]

φ(e3 × e1) = φ(e2) = Y = [Z,X] = [φ(e3), φ(e1)]

Thus the bracket of vector fields on R3 corresponds to the cross product on R3. In the
language of Lie algebras, the cross product gives a Lie algebra structure to R3 by

[, ] : R3 × R3 → R3

[x, y] 7→ x× y

and we have just shown that φ is a Lie algebra isomorphism onto its image.

(Exercise 4b)
Compute the flow of aX + bY + cZ.
Solution. First, note that

aX + bY + cZ = (cy − bz)
∂

∂x
+ (az − cx)

∂

∂y
+ (bx− ay)

∂

∂z
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We compute the integral curves of this vector field by solving a system of ODEs. Let
γ(t) = (x(t), y(t), z(t)) be an integral curve. Then we have

ẋ = cy − bz
ẏ = az − cx
ż = bx− ay

which we can also write as

d

dt

xy
z

 =

 0 c −b
−c 0 a
b −a 0

xy
z


Let A be the 3-by-3 matrix above. The eigenvalues of A are 0,±

√
a2 + b2 + c2 as a routine

calculation shows (compute the roots of det(A− λI)). Let λ1 = +
√
a2 + b2 + c2 and

λ2 = −
√
a2 + b2 + c2. First we compute the eigenvector associated to λ = 0. We have

y =
b

a
x z =

c

a
x

so the eigenvector is (1, b
a
, c
a
) which is equivalent, up to scaling, to v0 = (a, b, c). (Note that

we assume here that a 6= 0.) Now we compute the eigenvector associated to λ1. We assume
that λ 6= 0, so one of a, b, c 6= 0. WLOG, assume a 6= 0. We compute

y = (1/λ)(az − cx) = (1/a)(bx− λz)

z = (1/λ)(bx− ay) = (1/a)(λy + cx)

so then

y =
ab− λc
a2 + λ2

x z =
ac+ λb

a2 + λ2
x

so the associated eigenvector is (
1,
ab− λc
a2 + λ2

,
ac+ λb

a2 + λ2

)
x

which is equivalent up to rescaling to (a2 + λ2, ab + λc, λb + ac). Note that when λ = 0 we
recove the previous eigenvector v0 = (a, b, c). We denote by v1 the eigenvector for λ1 and v2
the eigenvector for λ2. The solutions to our system of ODEs then have the form

γ(t) = k0v0 + k1e
λ1tv1 + k2e

λ2tv2

for scalars k0, k1, k2 ∈ R. So we know what all of the integral curves of aX + bY + cZ look
like. If θ is the flow of this vector field, then θ(t, p) = γ(t) where γ is an integral curve with
γ(0) = p. To find k0, k1, k2 so that γ(0) = p = (x, y, z), we solve the linear system

[
v0 v1 v2

] k0k1
k2

 =

a a2 + λ21 a2 + λ22
b ab+ λ1c ab+ λ2c
c ac+ λ1b ac+ λ2b

k0k1
k2

 =

xy
z


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Using Matlab, I computed the inverse of this 3× 3 matrix, but it is excessively lengthy and
complicated, so I don’t include it here. Suffice it say, we can compute k0, k1, k2 in terms of
a, b, c and x, y, z so that the system is solved. Then we have

γ(0) = k0v0 + k1v1 + k2v2 = (x, y, z)

and γ is an integral curve of aX + bY + cZ. Then the flow θ is given by

θ(t, (x, y, z)) = γ(t)

keeping in mind that γ depends on k0, k1, k2 which depend linearly on x, y, z.
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