## Homework 7 Geometry

Joshua Ruiter

April 8, 2018

**Proposition 0.1** (Exercise 8-13). There is a smooth vector field on  $S^2$  that vanishes at exactly one point.

*Proof.* Let N, S be the north and south poles of  $S^2$  respectively. Let  $\sigma: (S^2 \setminus \{N\}) \to \mathbb{R}^2$  be the stereographic projection and let  $\widetilde{\sigma}: (S^2 \setminus \{S\}) \to \mathbb{R}^2$  be the corresponding projection omitting the south pole. Explicitly,

$$\sigma(x,y,z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right) \qquad \sigma^{-1}(u,v) = \left(\frac{2u}{u^2+v^2+1}, \frac{2v}{u^2+v^2+1}, \frac{u^2+v^2-1}{u^2+v^2+1}\right)$$

$$\widetilde{\sigma}(x,y,z) = \left(\frac{x}{1+z}, \frac{y}{1+z}\right) \qquad \widetilde{\sigma}^{-1}(u,v) = \left(\frac{2u}{u^2+v^2+1}, \frac{2v}{u^2+v^2+1}, \frac{1-u^2-v^2}{u^2+v^2+1}\right)$$

Note that the transition function  $\sigma \circ \widetilde{\sigma}^{-1}$  is explicitly

$$\sigma \circ \widetilde{\sigma}^{-1}(u,v) = \left(\frac{u}{u^2 + v^2}, \frac{v}{u^2 + v^2}\right)$$

We know that  $\sigma^{-1}$  is a diffeomorphism, because it is a smooth chart for  $S^2$ . By Proposition 8.19 (Lee), there is a unique smooth vector field  $(\sigma^{-1})_*(\frac{\partial}{\partial x})$  on  $S^2 \setminus \{N\}$ . Define a rough vector field on all of  $S^2$  by

$$X_p = \begin{cases} ((\sigma^{-1})_*(\frac{\partial}{\partial x}))_p & p \neq N \\ 0 & p = N \end{cases}$$

Because  $\sigma^{-1}$  is a diffeomorphism,  $(\sigma^{-1})_*$  is a vector space isomorphism at each  $p \in S^2 \setminus \{N\}$ . Therefore, since  $\frac{\partial}{\partial x}$  is nonzero everywhere,  $(\sigma^{-1})_*$  does not vanish on  $S^2 \setminus \{N\}$ . We just need to show that X is smooth at the north pole.

If we compute the coordinate representation of X in the smooth chart  $(S^2 \setminus \{S\}, \widetilde{\sigma})$ , we will have another expression for  $X_p$  which is defined on  $S^2 \setminus \{S\}$ . This expression will agree for  $p \in S^2 \setminus \{S\} \setminus \{N\}$  and will be smooth on  $S^2 \setminus \{S\}$ . One can check that the component functions  $X^i(p)$  are zero at p = N. Thus X is smooth at N.

**Lemma 0.2** (for Exercise 8-25). Let G be an abelian Lie group and let  $i: G \to G$  be the inversion map  $g \mapsto g^{-1}$ . Then i is a Lie group isomorphism.

*Proof.* The inversion map is smooth by definition of a Lie group. If  $g, h \in G$ , then

$$i(gh) = (gh)^{-1} = h^{-1}g^{-1} = i(h)i(g) = i(g)i(h)$$

using the fact that G is abelian. Thus i is a group homomorphism. It is injective since inverses are unique, and it is onto since every element has an inverse. Thus i is bijective. It is its own inverse, so it has a smooth inverse, so it is a diffeomorphism, so it is a Lie group isomorphism.

**Proposition 0.3** (Exercise 8-25). Let G be an abelian Lie group. Then the Lie algebra of G is abelian.

*Proof.* Let  $X, Y \in T_eG$  (that is,  $X, Y \in \text{Lie}(G)$ ). Using problem 7-2, we have

$$i_*X = -X$$
  $i_*Y = -Y$   $i_*[X, Y] = -(XY - YX)$ 

Then we compute

$$[i_*X, i_*Y] = [-X, -Y] = (-X)(-Y) - (-Y)(-X) = XY - YX$$

Since the inversion map i is a Lie group homomorphism,  $i_*: T_eG \to T_eG$  is a Lie algebra homomorphism (Theorem 8.44 of Lee) so

$$[X,Y] = XY - YX = [i_*X, i_*Y] = i_*[X,Y] = -(XY - YX) = -[X,Y]$$

Thus we have [X,Y]=-[X,Y], which implies that [X,Y]=0. Thus  $\mathrm{Lie}(G)$  is abelian.  $\square$ 

**Proposition 0.4** (Exercise 9-4). For  $n \in \mathbb{N}$  we define a flow on  $S^{2n-1} \subset \mathbb{C}^n$  by  $\theta(t,z) = e^{it}z$ . Then the infinitesimal generator of  $\theta$  is a smooth non-vanishing vector field on  $S^{2n-1}$ .

*Proof.* The infinitesimal generator of  $\theta$  is the vector field  $V_z$  defined by

$$V_z = \frac{\partial}{\partial t} e^{it} z \bigg|_{t=0} = i e^{it} z \bigg|_{t=0} = i z$$

 $\theta$  is smooth because it is essentially a map between Euclidean spaces, and its partial derivatives are all smooth. Since  $\theta$  is smooth, by Proposition 9.11 V is a smooth vector field. We need to show that it is non-vanishing. By the above computation,  $V_z = 0$  only if z = 0. But  $z = 0 \notin S^{2n-1}$  so V is non-vanishing on  $S^{2n-1}$ .

**Lemma 0.5** (for Exercise 9-7). Let B = B(0,1) be the unit ball in  $\mathbb{R}^n$  and let  $p, q \in B$ . There is a compactly supported smooth vector field X on B whose flow  $\theta$  satisfies  $\theta_1(p) = q$ .

*Proof.* Let

$$A = \{ p + t(q - p) : 0 \le t \le 1 \}$$

be the line segment connecting p, q. Note that A is closed. Because B is convex,  $A \subset B$ . Define a constant vector field X on A by  $X_a = q - p$ . Then X is trivially smooth. By Lemma 8.6 (Lee), there is a smooth vector field X on X such that  $X \mid_A = X$  and supp  $X \subseteq X$ . Thus X is a compactly supported smooth vector field on X. Note that

$$\gamma(t) = p + t(q - p)$$

is an integral curve of  $\widetilde{X}$ , as  $\gamma'(t) = q - p = \widetilde{X}_{\gamma(t_0)}$  for any  $0 \le t_0 \le 1$ . Therefore, if  $\theta$  is the flow of  $\widetilde{X}$ , we have  $\theta_1(p) = \gamma(1) = q$ .

**Proposition 0.6** (Exercise 9-7). Let M be a connected smooth manifold. Then the group of diffeomorphisms from M to itself acts transitively on M, that is, for  $p, q \in M$ , there is a diffeomorphism  $F: M \to M$  such that F(p) = q.

*Proof.* Fix  $p \in M$  and let  $U_p$  be the orbit of p under this action, that is,

$$U_p = \{ q \in M : \exists F : M \to M \text{ such that } F(p) = q \}$$

where F is a diffeomorphism. First, note that  $U_p$  is non-empty, as the identity on M is a diffeomorphism, so  $p \in U_p$ . We claim that  $U_p$  is both open and closed. First, we show that  $U_p$  is open. Let  $q \in U_p$  and let  $(V, \psi)$  be a smooth chart with  $q \in V$  so that  $\psi(V) = B(0,1) \subset \mathbb{R}^n$ . We claim that  $V \subset U_p$ . Let  $s \in V$ . Then  $\psi(s), \psi(q) \in B(0,1)$ , so by the previous lemma, there is a compactly supported smooth vector field X on B(0,1) with flow  $\theta$  so that  $\theta_1(\psi(q)) = \psi(s)$ . By Proposition 8.19 (Lee), there is a unique smooth vector field Y on V that is  $\psi$ -related to X, that is,

$$\psi_* Y_r = X_r \quad \text{ for } r \in V$$

Let  $\eta$  be the flow of Y. As Y is also compactly supported, by Lemma 8.6 (Lee) there is a smooth vector field  $\widetilde{Y}$  on M such that  $\widetilde{Y}|_{\text{supp }Y} = Y$  and  $\text{supp }\widetilde{Y} \subset V$ . If  $\widetilde{\eta}$  is the flow of  $\widetilde{Y}$ , then  $\widetilde{\eta}(t,p) = p$  outside V, so  $\widetilde{\eta}$  is a smooth global extension of  $\eta$ . In particular,  $\widetilde{\eta}_1$  is a smooth extension of  $\eta_1$ , and  $\widetilde{\eta}_1$  is a diffeomorphism on M. By Corollary 9.14 (Lee), as  $\psi^{-1}$  is a diffeomorphism,

$$\widetilde{\eta}_1 = \psi^{-1} \circ \theta_1 \circ \psi$$

In particular,

$$\widetilde{\eta}_1(q) = \psi^{-1} \circ \theta_1 \circ \psi(q) = \psi^{-1} \circ \psi(s) = s$$

By assumption,  $q \in U_p$  so there is a diffeomorphism  $F: M \to M$  such that F(p) = q. Thus  $\widetilde{\eta}_1 \circ F: M \to M$  is a diffeomorphism that maps p to s, so  $s \in U_p$ . Thus  $V \subset U_p$ , so  $U_p$  is open.

Now we show that  $U_p$  is closed. If  $M \setminus U_p = \emptyset$ , then we're done, so suppose  $M \setminus U_p \neq \emptyset$ . Let  $s \in M \setminus U_p$  and let  $(V, \psi)$  be a smooth chart containing s with  $\psi(V) = B(0, 1)$ . By the same reasoning as above, if V has non-empty intersection with  $U_p$ , say  $r \in V \cap U_p$ , then there is a diffeomorphism mapping p to r and a diffeomorphism mapping r to s, so  $s \in U_p$ , which is a contradiction. Thus  $V \cap U_p = \emptyset$ , so V is an open neighborhood of s contained in  $M \setminus U_p$ . Thus  $M \setminus U_p$  is open, so  $U_p$  is closed.

We have shown that  $U_p$  is open, closed, and non-empty. Since M is connected, this implies that  $U_p = M$ . Thus there is only one orbit, so the action is transitive.

**Proposition 0.7** (Exercise 4a). Let X, Y, Z be the vector fields on  $\mathbb{R}^3$  defined by

$$X = z \frac{\partial}{\partial y} - y \frac{\partial}{\partial z}$$
  $Y = x \frac{\partial}{\partial z} - z \frac{\partial}{\partial x}$   $Z = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$ 

Define  $\phi: \mathbb{R}^3 \to \mathfrak{X}(\mathbb{R}^3)$  by

$$(a, b, c) \mapsto aX + bY + cZ$$

Then  $\phi$  is an isomorphism onto its image, and the bracket of vector fields on  $\mathbb{R}^3$  corresponds to the cross product on  $\mathbb{R}^3$ . (That is,  $\phi$  is a Lie algebra isomorphism onto its image.)

*Proof.* First we show that  $\phi$  is linear. Let  $\lambda \in \mathbb{R}$ , and  $(a, b, c), (d, e, f) \in \mathbb{R}^3$ .

$$\phi(\lambda(a,b,c) + (d,e,f)) = \phi(\lambda a + d,\lambda b + e,\lambda c + f) = (\lambda a + b)X + (\lambda b + e)Y + (\lambda c + f)Z$$
$$= \lambda(aX + bY + cZ) + (dX + eY + fZ) = \lambda\phi(a,b,c) + \phi(d,e,f)$$

Thus  $\phi$  is linear. To show that  $\phi$  is injective, we show that it has trivial kernel. If  $(a, b, c) \in \ker \phi$ , then

$$0 = aX + bY + cZ = (cy - bz)\frac{\partial}{\partial x} + (az - cx)\frac{\partial}{\partial y} + (bx - ay)\frac{\partial}{\partial z}$$

which implies that for all  $x, y, z \in \mathbb{R}$ , we have

$$cy - bz = az - cx = bx - ay = 0$$

In particular, this holds for y=1, z=0, so c=0. Likewise,  $z=1, x=0 \implies a=0$ , and  $x=1, y=0 \implies b=0$ . Thus the kernel of  $\phi$  is just (0,0,0), so  $\phi$  is injective. It is onto its image by definition, so it is an isomorphism onto its image.

Let  $e_1, e_2, e_3$  be the standard basis for  $\mathbb{R}^3$  (where  $e_1 = (1, 0, 0)$ , etc.). Then  $\phi$  maps the basis  $\{e_1, e_2, e_3\}$  to  $\{X, Y, Z\}$  therefore  $\{X, Y, Z\}$  is a basis for the image of  $\phi$  (because  $\phi$  is an isomorphism). The cross products of the standard basis are

$$e_1 \times e_2 = e_3$$
  $e_2 \times e_3 = e_1$   $e_3 \times e_1 = e_2$ 

We also compute the brackets of our vector fields X, Y, Z, and find

$$[X,Y] = Z \qquad [Y,Z] = X \qquad [Z,X] = Y$$

Thus we have

$$\phi(e_1 \times e_2) = \phi(e_3) = Z = [X, Y] = [\phi(e_1), \phi(e_2)]$$
  

$$\phi(e_2 \times e_3) = \phi(e_1) = X = [Y, Z] = [\phi(e_2), \phi(e_3)]$$
  

$$\phi(e_3 \times e_1) = \phi(e_2) = Y = [Z, X] = [\phi(e_3), \phi(e_1)]$$

Thus the bracket of vector fields on  $\mathbb{R}^3$  corresponds to the cross product on  $\mathbb{R}^3$ . In the language of Lie algebras, the cross product gives a Lie algebra structure to  $\mathbb{R}^3$  by

$$[,]: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$
  
 $[x,y] \mapsto x \times y$ 

and we have just shown that  $\phi$  is a Lie algebra isomorphism onto its image.

(Exercise 4b)

Compute the flow of aX + bY + cZ.

**Solution.** First, note that

$$aX + bY + cZ = (cy - bz)\frac{\partial}{\partial x} + (az - cx)\frac{\partial}{\partial y} + (bx - ay)\frac{\partial}{\partial z}$$

We compute the integral curves of this vector field by solving a system of ODEs. Let  $\gamma(t) = (x(t), y(t), z(t))$  be an integral curve. Then we have

$$\dot{x} = cy - bz$$

$$\dot{y} = az - cx$$

$$\dot{z} = bx - ay$$

which we can also write as

$$\frac{d}{dt} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Let A be the 3-by-3 matrix above. The eigenvalues of A are  $0, \pm \sqrt{a^2 + b^2 + c^2}$  as a routine calculation shows (compute the roots of  $\det(A - \lambda I)$ ). Let  $\lambda_1 = +\sqrt{a^2 + b^2 + c^2}$  and  $\lambda_2 = -\sqrt{a^2 + b^2 + c^2}$ . First we compute the eigenvector associated to  $\lambda = 0$ . We have

$$y = \frac{b}{a}x$$
  $z = \frac{c}{a}x$ 

so the eigenvector is  $(1, \frac{b}{a}, \frac{c}{a})$  which is equivalent, up to scaling, to  $v_0 = (a, b, c)$ . (Note that we assume here that  $a \neq 0$ .) Now we compute the eigenvector associated to  $\lambda_1$ . We assume that  $\lambda \neq 0$ , so one of  $a, b, c \neq 0$ . WLOG, assume  $a \neq 0$ . We compute

$$y = (1/\lambda)(az - cx) = (1/a)(bx - \lambda z)$$
$$z = (1/\lambda)(bx - ay) = (1/a)(\lambda y + cx)$$

so then

$$y = \frac{ab - \lambda c}{a^2 + \lambda^2}x$$
  $z = \frac{ac + \lambda b}{a^2 + \lambda^2}x$ 

so the associated eigenvector is

$$\left(1, \frac{ab - \lambda c}{a^2 + \lambda^2}, \frac{ac + \lambda b}{a^2 + \lambda^2}\right) x$$

which is equivalent up to rescaling to  $(a^2 + \lambda^2, ab + \lambda c, \lambda b + ac)$ . Note that when  $\lambda = 0$  we recove the previous eigenvector  $v_0 = (a, b, c)$ . We denote by  $v_1$  the eigenvector for  $\lambda_1$  and  $v_2$  the eigenvector for  $\lambda_2$ . The solutions to our system of ODEs then have the form

$$\gamma(t) = k_0 v_0 + k_1 e^{\lambda_1 t} v_1 + k_2 e^{\lambda_2 t} v_2$$

for scalars  $k_0, k_1, k_2 \in \mathbb{R}$ . So we know what all of the integral curves of aX + bY + cZ look like. If  $\theta$  is the flow of this vector field, then  $\theta(t, p) = \gamma(t)$  where  $\gamma$  is an integral curve with  $\gamma(0) = p$ . To find  $k_0, k_1, k_2$  so that  $\gamma(0) = p = (x, y, z)$ , we solve the linear system

$$\begin{bmatrix} v_0 & v_1 & v_2 \end{bmatrix} \begin{bmatrix} k_0 \\ k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} a & a^2 + \lambda_1^2 & a^2 + \lambda_2^2 \\ b & ab + \lambda_1 c & ab + \lambda_2 c \\ c & ac + \lambda_1 b & ac + \lambda_2 b \end{bmatrix} \begin{bmatrix} k_0 \\ k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Using Matlab, I computed the inverse of this  $3 \times 3$  matrix, but it is excessively lengthy and complicated, so I don't include it here. Suffice it say, we can compute  $k_0, k_1, k_2$  in terms of a, b, c and x, y, z so that the system is solved. Then we have

$$\gamma(0) = k_0 v_0 + k_1 v_1 + k_2 v_2 = (x, y, z)$$

and  $\gamma$  is an integral curve of aX + bY + cZ. Then the flow  $\theta$  is given by

$$\theta(t,(x,y,z)) = \gamma(t)$$

keeping in mind that  $\gamma$  depends on  $k_0, k_1, k_2$  which depend linearly on x, y, z.